Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)ProbNV is a new framework for probabilistic network control plane verification that strikes a balance between generality and scalability. ProbNV is general enough to encode a wide range of features from the most common protocols (eBGP and OSPF) and yet scalable enough to handle challenging properties, such as probabilistic all-failures analysis of medium-sized networks with 100-200 devices. When there are a small, bounded number of failures, networks with up to 500 devices may be verified in seconds. ProbNV operates by translating raw CISCO configurations into a probabilistic and functional programming language designed for network verification. This language comes equipped with a novel type system that characterizes the sort of representation to be used for each data structure: concrete for the usual representation of values; symbolic for a BDD-based representation of sets of values; and multi-value for an MTBDD-based representation of values that depend upon symbolics. Careful use of these varying representations speeds execution of symbolic simulation of network models. The MTBDD-based representations are also used to calculate probabilistic properties of network models once symbolic simulation is complete. We implement the language and evaluate its performance on benchmarks constructed from real network topologies and synthesized routing policies.more » « less
-
We show how to verify that large data center networks satisfy key properties such as all-pairs reachability under a bounded number of faults. To scale the analysis, we develop algorithms that identify network symmetries and compute small abstract networks from large concrete ones. Using counter-example guided abstraction refinement, we successively refine the computed abstractions until the given property may be verified. The soundness of our approach relies on a novel notion of network approximation: routing paths in the concrete network are not precisely simulated by those in the abstract network but are guaranteed to be “at least as good.” We implement our algorithms in a tool called Origami and use them to verify reachability under faults for standard data center topologies. We find that Origami computes abstract net- works with 1–3 orders of magnitude fewer edges, which makes it possible to verify large networks that are out of reach of existing techniques.more » « less
-
We show how to verify that large data center networks satisfy key properties such as all-pairs reachability under a bounded number of faults. To scale the analysis, we develop algorithms that identify network symmetries and compute small abstract networks from large concrete ones. Using counter-example guided abstraction refinement, we successively refine the computed abstractions until the given property may be verified. The soundness of our approach relies on a novel notion of network approximation: routing paths in the concrete network are not precisely simulated by those in the abstract network but are guaranteed to be “at least as good.” We implement our algorithms in a tool called Origami and use them to verify reachability under faults for standard data center topologies. We find that Origami computes abstract net- works with 1–3 orders of magnitude fewer edges, which makes it possible to verify large networks that are out of reach of existing techniques.more » « less
An official website of the United States government

Full Text Available